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1 Course Overview

This is a research-oriented course on algorithms. The main goal is to bring
students up to the research frontier and equip them to do original research
in this area. The course covers several advanced topics, extending and com-
plementing those usually covered in traditional graduate algorithms courses,
with a focus on the latest research trends.

1.1 Course Format

This course is lecture-based and evaluated on the basis of a semester-long
project. The course is structured as follows:

• First half: Regular lectures introducing advanced topics in algorithms

• Second half: Project management and technical discussions

1.2 Main Topics

The course covers the following main areas:

• Advanced data structures

• Online algorithms

• Algorithms with predictions

• Parallel algorithms

2 Advanced Data Structures

2.1 Project Proposals

The following are potential projects related to Advanced Data Structures:

1. [Study] Fibonacci heaps enable even faster algorithms for minimum
spanning trees: in their original paper [21], Fredman and Tarjan give
an algorithm with running time O(m log∗ n), where log∗ is the iterated
logarithm function (i.e., the number of times we must take logarithms
before the argument becomes smaller than 1). Study and present that
algorithm.

2. [Study/Implementation]Kaplan et al. [27] revisited Fibonacci heaps
proposing a one-tree version of this classic data structure in which each
decrease-key requires only a single cut. Study and present the paper
and/or implement this revisited version and compare your implemen-
tation with the original Fibonacci heaps.
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3. [Open Problem] [27] leaves some open problems related to the anal-
ysis of their revisited Fibonacci heap. Try to solve one of those open
problems.

4. [Implementation] A strict Fibonacci heap is a data structure with
the same time bounds of Fibonacci heaps but in the worst case [10].
The authors also made available a Python implementation of their
data structure: can you give a faster implementation?

5. [Study] Very recently, Haeupler et al. [25] developed a new heap data
structure that makes Dijkstra’s shortest-path algorithm universally op-
timal, namely running as fast as possible on every single graph layout.
Study and present that paper.

6. [Study] Moving to another fundamental data structure, hash tables,
very recently a new construction has been invented that achieves far
better expected search complexities than were previously thought pos-
sible [19]. The main author is an undergraduate student! Study and
present that paper.

7. [Study] A big news in the field of algorithms was the recent develop-
ment of a near-linear algorithm for single-source shortest paths, work-
ing even in the presence of negative weights [8, 9]. Study and present
that algorithm.

8. [Implementation] Very recently, Cassis et al. [11] implemented the
algorithm of [9]: can you give a faster implementation?

2.2 Priority Queues and Heaps

A priority queue is a data structure supporting the following operations:

• INSERT(k): Add a new element with key k

• EXTRACT-MIN: Return and remove an element with minimum
key

• DECREASE-KEY: Replace the key value of some element with a
new smaller value

Binary heaps provide an implementation with O(log n) time complex-
ity for all operations. However, for applications like Dijkstra’s algorithm
and Prim’s algorithm, this results in O(m log n) time complexity, which is
suboptimal for dense graphs.
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2.3 Fibonacci Heaps

Fibonacci heaps were developed by Fredman and Tarjan (1984) to improve
Dijkstra’s algorithm running time. They provide a more efficient implemen-
tation of priority queues with the following amortized time complexities:

• INSERT: O(1)

• EXTRACT-MIN: O(log n)

• DECREASE-KEY: O(1)

2.3.1 Structure

A Fibonacci heap is a collection of trees with the following properties:

1. Vertices of the trees correspond to elements being stored in the queue

2. Roots of heap-ordered trees are arranged in a doubly linked list

3. We maintain a pointer to the root of a tree that contains the minimum
key

4. The heap property is maintained: the key of every child is not smaller
than the key of its parent

2.3.2 Operations

INSERT The insertion operation is very simple: create a new heap-
ordered tree and add it to the collection of trees in the heap.

DECREASE-KEY When decreasing a key, if the new key is smaller than
the parent’s key, we cut the node from its parent and make it a new root in
the linked list. To prevent trees from degenerating into lists, we introduce
a marking mechanism:

• Mark nodes that have lost a child

• When cutting a marked node’s child, also cut the marked node itself

• Unmarked nodes are marked when they lose a child

EXTRACT-MIN To extract the minimum:

1. Remove the minimum node

2. Make all its children roots of new trees in the collection

3. Consolidate trees by merging trees with the same rank (number of
children)
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2.3.3 Amortized Analysis

For the amortized analysis of Fibonacci heaps, we use the potential function
method.

Definition 2.1. The potential function Φ maps a configuration D of an
evolving data structure into a number Φ(D).

If operation oi has actual cost ci, then its amortized cost is defined by:

ai = ci +∆Φi = ci +Φi − Φi−1

For Fibonacci heaps, we use the potential function:

Φ(t) = t+ 2mt

where t is the number of trees in the heap and mt is the number of marked
nodes.

Theorem 2.1. The amortized cost of EXTRACT-MIN is O(log n) and the
amortized cost of DECREASE-KEY is O(1).

2.3.4 Application to Dijkstra and Prim’s Algorithms

Using Fibonacci heaps improves the time complexity of these algorithms
from O(m log n) to O(m + n log n), which is a significant improvement for
dense graphs.

3 Online Algorithms

3.1 Project Proposals

The following are potential projects related to Online Algorithms:

1. [Study] Recently, researchers took a fresh look at the classic ski-rental
problem by revisiting the performance of randomized algorithms [18].
Study and present that paper.

2. [Open Problem]With regard to [18]: can you simplify their analysis?
Can you do the same kind of investigation for other online problems,
such as paging?

3. [Study] In many modern computing systems the amount of available
memory is not fixed but varies over time. Recently, Peserico [33] revis-
ited the classic paging problem in this scenario, showing that several
(but not all) well-known paging algorithms such as LRU still perform
remarkably well. Study and present that paper.
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4. [Open Problem] Investigate weighted paging, a classic generalization
of paging where each page has its own fetching cost, in the model
of [33].

5. [Study] Online bipartite matching is a classic problem in online algo-
rithms, with tons of applications. Given a bipartite graph containing
a perfect matching, vertices of one side arrive in an order selected by
an adversary, and edges incident to a vertex are unknown until the
vertex arrives. As a vertex arrives, we may irrevocably match it to
a vertex of the other side or leave it unmatched forever. The goal is
to maximize the size of the resulting matching. Study and present
Ranking, the optimal algorithm for this problem [37].

6. [Implementation] In online matching on the line, n points of a line
are designated as servers, and n requests arrive one by one at arbitrary
points of the line. When a request arrives it must be immediately and
irrevocably matched to a yet unmatched server. The cost of matching
a request to a server is equal to their distance, and the goal is to
minimize the total cost of matching all requests. Recently, a class
of ”hard” input instances was defined to prove a lower bound on the
competitive ratio of any online algorithm [34]. Run some experiments
to understand what is the expected cost incurred by the optimal offline
algorithm on such a class; also, can you prove a lower bound on such
a cost?

7. [Open Problem] Gairing and Klimm study the greedy algorithm
for online metric matching with random arrival order [22]. Can you
improve their upper and/or lower bound?

8. [Open Problem] Very recently, Harada and Itoh give a new determin-
istic algorithm for online metric b-matching that is O(k)-competitive,
where k is the number of server locations [26]. Make their algorithm
and/or analysis simpler, and/or improve the constants in their upper
bound.

9. [Study/Implementation/Open Problem] Gupta et al. [24] study
the effects of recourse (that is, relaxing the assumption that the deci-
sions of online algorithms be irrevocable) in online metric matching.
Here the possibilities are to 1) study and present their algorithm, 2)
implement it to see its performance in practice, and 3) prove or dis-
prove their conjecture.

3.2 Introduction to Online Algorithms

Unlike traditional algorithms in the RAM model where all input is available
at the beginning, online algorithms receive input piece by piece and must
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make irrevocable decisions before seeing the entire input.

Definition 3.1. An online algorithm ALG is c-competitive if for every input
instance σ:

ALG(σ) ≤ c ·OPT (σ) + b

where OPT (σ) is the value achieved by an optimal offline algorithm, and b
is a constant independent of the input size.

For randomized algorithms, we consider the expected performance:

E[ALG(σ)] ≤ c ·OPT (σ) + b

3.3 The Ski Rental Problem

3.3.1 Problem Definition

You go skiing and don’t know in advance how many days you will ski. Each
morning, you must decide whether to rent skis for $1 per day or buy skis
for $B. The goal is to minimize the total cost.

3.3.2 Optimal Offline Algorithm

With complete knowledge of the number of skiing days t:

• If t ≥ B, buy skis on day 1

• Otherwise, rent for all t days

3.3.3 Deterministic Online Algorithm

Rent skis for the first B − 1 days, then buy skis on day B.

Theorem 3.1. This algorithm is 2-competitive.

Proof. We have two cases:

• Case 1: t ≤ B − 1. The online cost is t, the optimal cost is t, so the
ratio is t

t = 1 ≤ 2.

• Case 2: t ≥ B. The online cost is (B − 1) +B = 2B − 1, the optimal
cost is B, so the ratio is 2B−1

B ≤ 2.

Theorem 3.2. No deterministic algorithm can achieve a competitive ratio
better than 2 for the ski rental problem.
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3.3.4 Randomized Online Algorithm

Algorithm: With probability 1
2 , rent for B − 1 days then buy; with proba-

bility 1
2 , rent for B days then buy.

Theorem 3.3. This randomized algorithm is 1.875-competitive.

3.4 Paging (Caching)

3.4.1 Problem Definition

We have a cache of size k and a sequence of page requests. When a page is
not in the cache, we must evict some page to make room for the requested
page, causing a page fault. The goal is to minimize the total number of page
faults.

3.4.2 Optimal Offline Algorithm

The Furthest-in-the-Future algorithm: Evict the page that will be requested
furthest in the future.

3.4.3 Deterministic Online Algorithms

Least Recently Used (LRU) Evict the page that has not been used for
the longest time.

Theorem 3.4. LRU is k-competitive.

Proof. We partition the request sequence into phases, where each phase
contains at most k distinct page requests.

• LRU incurs at most k page faults in each phase

• Any algorithm (including OPT) incurs at least 1 page fault in each
phase except possibly the last

If there are m phases, then LRU(σ) ≤ k ·m and OPT (σ) ≥ m− 1.

Theorem 3.5. Any deterministic paging algorithm cannot have a competi-
tive ratio better than k.

3.4.4 Randomized Online Algorithms

Marking Algorithm

• Initially, all pages are unmarked

• When a page is requested:

– If it’s already in memory, mark it
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– If not:

∗ If all pages in memory are marked, unmark them all

∗ Evict a random unmarked page

∗ Bring in the new page and mark it

Theorem 3.6. The expected competitive ratio of the Marking algorithm is:

• 2Hk if there are more than k distinct pages in the request sequence

• Hk if there are exactly k distinct pages

where Hk = 1 + 1
2 + . . .+ 1

k is the k-th harmonic number.

4 Algorithms with Predictions

4.1 Project Proposals

The following are potential projects related to Algorithms with Predictions:

1. [Writing]Write lecture notes for algorithms with predictions. Besides
what covered in class, these should contain a coverage of paging for
possible classroom use.

2. [Writing] So far about a dozen papers, as well as a patent, investi-
gated how to improve paging using ML predictions. Write a survey
on paging with predictions highlighting the key ideas and techniques,
experimental results, and the research questions that remain open.

3. [Study/Implementation/Open Problem] Dinitz et al. [17] initi-
ate the study of algorithms with distributional predictions, where the
prediction is a distribution instead of a single value. They initiate this
line of research with binary search as a case study. Study and present
their paper. Can you improve over their theoretical or experimental
results? What about other problems (such as ski rental) in the setting
of distributional predictions?

4. [Study/Implementation/Open Problem] The algorithms-with-predictions
framework has been used extensively to design online algorithms with
improved competitive ratios. Another possibility is to use predictions
to improve the running time of offline algorithms: in fact, while in clas-
sic algorithmics we make the assumption that problems are solved from
scratch, in real applications many problems are solved repeatedly on
similar input instances, thus opening the opportunity to design better
algorithms by leveraging similarities across problem instances. Re-
searchers have recently developed such accelerated algorithms for sev-
eral problems, such as shortest paths [12, 28], maximum flow [15], and
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minimum cut [31], or to obtain better approximation algorithms [3].
Study and present one of those papers.

5. [Study/Implementation/Open Problem]Data structures can also
benefit from applying ML predictions, giving better performance than
their classical counterparts that do not take advantage of patterns in
the input data. Study and present [7], which shows how to improve
heaps.

6. [Study/Implementation/Open Problem] Pick your favorite prob-
lem and 1) study the relevant paper(s) from the list in Further Mate-
rial, 2) do an experimental evaluation of algorithms with predictions
for that problem (such as [13] for paging), or 3) solve an open problem
suggested by any of the papers from the list in Further Material.

4.2 Introduction

Algorithms with predictions (also known as Learning-Augmented Algorithms)
combine classical algorithms with machine learning. The idea is to use pre-
dictions about the input to improve performance, while providing guarantees
based on the accuracy of these predictions.

Desirable properties of algorithms with predictions:

• Consistency: When predictions are accurate, the algorithm should
perform better than classical algorithms

• Robustness: Even with inaccurate predictions, the algorithm should
not perform much worse than classical algorithms

4.3 Predicted Binary Search

4.3.1 Problem Definition

Given a sorted array A with n elements and a query element q, find the
position of q in A or report that it is not in A.

4.3.2 Classical Algorithm

Binary search with O(log n) comparisons.

4.3.3 Algorithm with Prediction

Let h(q) be a predictor for the position of q in A. The algorithm:

1. If q = A[h(q)], return h(q)

2. Else if q > A[h(q)], probe A[h(q)+1], A[h(q)+2], A[h(q)+4], . . . until
finding the right boundary, then binary search
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3. Else probe A[h(q)−1], A[h(q)−2], A[h(q)−4], . . . until finding the left
boundary, then binary search

Theorem 4.1. Let t(q) be the true position of q in A and η = |h(q)− t(q)|
be the error of the predictor. The algorithm requires O(log η + log log n)
comparisons.

4.4 Ski Rental with Predictions

4.4.1 Prediction Model

Let t be the true number of skiing days and y be the predicted number. The
error is η = |y − t|.

4.4.2 Cautious Algorithm

Let λ ∈ (0, 1) be a tunable parameter. Algorithm:

• If y < B, then buy on day ⌈λB⌉

• Else buy on day B/λ

Theorem 4.2. The competitive ratio of this algorithm is at most min{1 +
λ, 1 + η

OPT · 1
1−λ}.

This algorithm balances consistency and robustness:

• With perfect predictions (η = 0), the competitive ratio approaches 1

• With arbitrarily bad predictions, the competitive ratio is bounded by
1 + λ

5 Parallel Algorithms

5.1 Project Proposals

The following are potential projects related to Parallel Algorithms:

1. [Study] The fastest known deterministic MPC algorithm to determine
the connected components of a graph in the sub-linear space regime is
due to Coy and Czumaj [14]. Study and present that paper.

2. [Study] The fastest known MPC algorithm to compute a minimum
spanning tree of a graph in the sub-linear space regime is a simple
O(log n)-round algorithm, and there is a matching conditional lower
bound. Thus, researchers investigated special cases where this loga-
rithmic barrier could be broken, such as when the vertices correspond
to points in a metric space [4] or in a Euclidean space [2, 23]. Study
and present one (or more) of these papers.
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3. [Study] Behnezhad et al. [6] showed that a very simple algorithm for
maximal matching runs very fast in the MPC model, most notably
when the space per machine is just O(n). Study and present that
paper.

4. [Study] A recent line of research is trying to understand the capabil-
ities of transformers to solve graph problems, and in particular which
architectural properties (such as depth and width) transformers need
to do that. This can be done by establishing a connection (through
simulations) between MPC and transformers [35, 36, 38]. Study and
present one of those papers.

5. [Open Problem] Counting the number of triangles in a graph can be
done in O(1) MPC rounds in some specific classes of graphs [29]. The
paper concludes with some interesting open problems: attack one of
them.

6. [Study] Working in the classical PRAM model for parallel comput-
ing, Fischer et al. [20] recently designed a new parallel algorithm for
negative-weight single-source shortest paths. Study and present that
paper.

5.2 Massively Parallel Computation (MPC) Model

The MPC model is an abstraction of popular parallel computing frameworks
like MapReduce, Hadoop, Spark, and Flume.

5.2.1 Model Definition

• A cluster of machines all connected to each other

• Input of size N

• Each machine has memory of size S = O(N1−ε) for some constant
ε ∈ (0, 1)

• Computation proceeds in synchronous rounds:

– Beginning: Read all messages received in the previous round

– Middle: Local computation on local data

– End: Send messages to other machines

• In every round, each machine can send or receive O(N1−ε) data words

• Goal: Minimize the number of rounds to solve the problem
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5.2.2 Regimes for Graph Problems

For a graph with n vertices and m edges:

• Sub-linear regime: S = O(n1−ε) for some constant ε ∈ (0, 1)

• Near-linear regime: S = Õ(n) (suppressing polylog factors)

• Super-linear regime: S = O(n1+ε) for some constant ε ∈ (0, 1)

5.3 Minimum Spanning Tree in the Super-Linear Regime

We focus on connected graphs with m = Õ(n) for some constant c ≥ 1 and
available memory S = O(nε) with ε > c.

5.3.1 Algorithm

Algorithm 1 MPC-MST(G = (V,E))

1: if |E| ≤ nε then
2: Compute T = MST(E) locally
3: return T
4: else
5: ℓ = |E|/nε ▷ Number of machines to use in this round
6: Partition E into E1, E2, . . . , Eℓ using a hash function h : E →

{1, 2, . . . , ℓ}
7: In parallel, compute Ti = MST(Ei ∪ V ) for each i ∈ {1, 2, . . . , ℓ}
8: return MPC-MST(∪ℓ

i=1Ti)
9: end if

5.3.2 Analysis

Lemma 5.1. With high probability, the memory constraint of each machine
is never violated.

Proof. By Chernoff bound and union bound.

Lemma 5.2. The algorithm correctly computes an MST of the input graph.

Proof. Based on the cycle property of MSTs: if e is an edge not in the MST
T , and C is the cycle formed by adding e to T , then e has weight at least
as large as every other edge in C.

Theorem 5.3. The algorithm runs in O(log log n) rounds with high proba-
bility.

Proof. In every round, the input size is reduced by a factor of λ = nε.
Therefore, after O(logλm) = O(logλ n) = O(1/ε · log logn) = O(log log n)
rounds, the input is small enough to fit onto a single machine.
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5.4 Maximal Matching in MPC

5.4.1 Algorithm

1. Each machine i samples each local edge independently with probability
p = 1/

√
m and sends the sampled edges to machine 1

2. Machine 1 finds a maximal matching M of the sampled edges locally
and adds M to the final output

3. Remove the matched vertices in M from the graph and recurse on the
remaining edges until the number of remaining edges can fit into a
single machine

Lemma 5.4. With high probability, the number of sampled edges fits into a
single machine.

Lemma 5.5. After the i-th round, the remaining graph has O(m(1−1/
√
m)i)

edges with high probability.

Theorem 5.6. The MPC Maximal Matching algorithm runs in O(log log n)
rounds with high probability.

6 Additional Project Topics

The following are project proposals on additional topics beyond the main
course content:

1. [Machine Learning Algorithms]Hierarchical clustering is a method
of cluster analysis that seeks to build a hierarchy of clusters. Study
and present one of the following two papers on hierarchical clustering
algorithms: [30, 16].

2. [Sublinear Algorithms] A sublinear algorithm is an algorithm whose
running time grows slower than the size of the input, and thus only
gives an approximate or probably correct answer. Study and present [32],
which gives a simple sublinear algorithm to approximate the weight of
a minimum spanning tree.

3. [Fine-Grained Complexity] Fine-grained complexity theory allows
to rule out faster algorithms by proving conditional lower bounds
via fine-grained reductions from certain key conjectures. Study and
present one of the following two papers on fine-grained complexity [1,
5].

4. [Quantum Computing] Quantum computing has the potential to
efficiently solve problems that would be extremely difficult if not im-
possible for classical computers. Tech companies and governments
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have been funneling billions of dollars into quantum computers for
years; the global race to build fully functional quantum computers
was kicked off by Shor’s factoring algorithm. Study and present it.

5. [Misc] Pick and study a recent paper on your favorite topic/problem
from SODA (the top conference for research in algorithms) or HALG
(a conference for presenting the highlights of recent developments in
algorithms).

7 Course Projects

The course evaluation is based on a project that requires students to dive
deeper into one of the topics covered. The project can take several forms:

• Study and Presentation: Present in detail a recent research paper
from a top conference/journal.

• Writing: Create a survey or lecture notes on a few related papers.

• Implementation: Implement some recent algorithm, or possibly mul-
tiple algorithms to compare, trying to find new heuristics that might
provide practical speedup.

• Open Problem: Attack and try to solve an open problem in the field.

All projects conclude with a presentation, which can be scheduled during
one of the 5 official exam dates. There is no strict deadline, but earlier
completion is encouraged. Students are allowed and encouraged to work in
teams, but the scope of the project should match the team size.
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